V-type H+-ATPase and Na+,K+-ATPase in the gills of 13 euryhaline crabs during salinity acclimation.

نویسندگان

  • Jyuan-Ru Tsai
  • Hui-Chen Lin
چکیده

Because of their diverse habitats, crabs are excellent experimental species to study owing to the morphological changes and physiological adaptation that occur during their terrestrial invasion. Their hemolymphic osmoregulation in brackish water is crucial for a successful terrestrial invasion. Crabs can actively uptake or excrete ions upon salinity change, and the gills play a major role among the osmoregulatory organs. Several enzymes are involved in the osmoregulatory process, including Na+, K+-ATPase and V-type H+-ATPase (V-H+-ATPase). Na+, K+-ATPase is the driving force in establishing an ion gradient across the epithelial cell membrane in marine crabs. It has been reported that the osmoregulatory mechanisms in freshwater crabs are different from those in marine ones, suggesting that the driving force may come from V-H+-ATPase by generating the H+ ion gradient to facilitate the ion flow. Thirteen crab species from two families were used in this study. These crabs lived in five different habitats, including marine, intertidal, bimodal, freshwater and terrestrial habitats. The distribution of V-H+-ATPase in the 13 euryhaline crabs was revealed by histochemistry. V-H+-ATPase was localized in the apical region in crabs that could survive in the freshwater environment. We found that the freshwater and terrestrial crabs with stable Na+, K+-ATPase activity during salinity changes tended to have an apical V-H+-ATPase, whereas the intertidal ones with varying Na+, K+-ATPase activity showed a cytoplasmic V-H+-ATPase distribution. Finally, in Uca formosensis, a crab that had stable Na+, K+-ATPase activity, a significant difference in V-H+-ATPase activity between salinities was found. In conclusion, the hypothesis that V-H+-ATPase plays a crucial role in the freshwater adaptation of crabs is supported by our systemic investigation on 13 euryhaline crabs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular characterization of V-type H(+)-ATPase (B-subunit) in gills of euryhaline crabs and its physiological role in osmoregulatory ion uptake.

The vacuolar-type H(+)-ATPase (V-ATPase) has been implicated in osmoregulatory ion uptake across external epithelia of a growing variety of species adapted to life in fresh water. In the present study, we investigated whether the V-ATPase may also function in a euryhaline species that tolerates brackish water (8 salinity) but not fresh water, the shore crab Carcinus maenas. cDNA coding for the ...

متن کامل

Gill Na,K-ATPase in the spiny lobster Palinurus elephas and other marine osmoconformers. Adaptiveness of enzymes from osmoconformity to hyperregulation.

Haemolymph inorganic osmolyte changes and Na,K-ATPase activities in trichobranchiate and epipodite tissues were examined in the spiny lobster Palinurus elephas gradually acclimated from seawater (SW; 38 ppt, salinity; 1291 mOsmol/l) down to dilute seawater (DSW; 20 ppt, salinity; 679 mOsmol/l). During acclimation to DSW haemolymph was only transiently hypoosmotic, becoming isosmotic to the medi...

متن کامل

Osmoregulation by Gills of Euryhaline Crabs: Molecular Analysis of Transporters1

SYNOPSIS. The physiological mechanisms by which aquatic animals regulate the osmoconcentration of their body fluids remain unclear despite many excellent studies of tissue and cell function. This review summarizes the current status of an ongoing molecular biological approach to investigating transporters and transportrelated enzymes in ion-transporting gills of osmoregulating crustaceans. We h...

متن کامل

Branchial Na+:K+:2Cl− cotransporter 1 and Na+/K+-ATPase α-subunit in a brackish water-type ionocyte of the euryhaline freshwater white-rimmed stingray, Himantura signifer

Himantura signifer is a freshwater stingray which inhabits rivers in Southeast Asia. It can survive in brackish water but not seawater. In brackish water, it becomes partially ureosmotic, but how it maintains its plasma hypoionic to the external medium is enigmatic because of the lack of a rectal gland. Here, we report for the first time the expression of Na(+):K(+):2Cl(-) cotransporter 1 (nkcc...

متن کامل

-K+ATPase Activity in Gills of t h e Euryhaline Crab Chasmagnathus granulata

The occurrence and response of N a + K + A T P a s e specific activity to environmental salinity changes were studied in gill extracts of all of the gills of the euryhaline crab Chasmagnathus granulata from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina) All of the gills exhibited a salinity depen­ dent N a + K + A T P a s e activity, although the pat tern of response to environm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 210 Pt 4  شماره 

صفحات  -

تاریخ انتشار 2007